본문 바로가기
BI/인공지능

아주 친절한 <핸드온 비지도 학습>

by wizmusa 2020. 8. 24.

회사에서 인공지능 관련 일을 하기에 (내외부) 현업 고객들이 현장 니즈를 주제로 아이디어를 토의할 때가 있습니다. 얼마 전부터  AI 학습용 데이터를 확보하기가 어렵다는 것은 잘 알게 된 현업이 간혹 비지도 학습으로 해결할 수 있는지 물을 때가 있었습니다. 그냥 이미지 데이터, 그냥 비정형 텍스트 문서 데이터는 많은데, 학습용 데이터로 가공하려면 태깅, 라벨링 작업이 필수적이며 인건비가 상당히 들 수 밖에 없습니다. 때문에 비지도 학습이 데이터가 부족한 현실을 타개하는 돌파구가 되어줄 수 있는지 알고 싶어했습니다. 안타깝지만 비지도 학습이 그런 식으로 도깨비 방망이가 되지는 못한다는 답변을 해야 할 때가 태반이었습니다.

이제까지 제가 일하는 곳은 PCA와 K-Means로 전형적인 비지도 학습만 해보았습니다. 이 정도만 해도 꽤 효과적이었습니다. 그래도 최근 몇 년 사이에 딥러닝과 더불어 비지도 학습 기술도 크게 발전하고 사례가 많이 나오고 있음을 알았기에 어떻게 익혀 볼까 고민만 하던 차에 반가운 책이 나왔습니다.

핸즈온 비지도 학습 - 텐서플로, 케라스, 사이킷런을 활용한 알고리즘과 방법론, AI 활용 사례

https://www.hanbit.co.kr/store/books/look.php?p_code=B7126889829

집어 들기 버겁도록 두꺼운 원서나 왜 번역했는지 모를 번역서는 있었어도, 비지도 학습을 주로 다룬 입문서는 많지 않았기에 정말 반가웠습니다. 인공지능, 머신러닝을 처음 접하는 독자는 다른 좀 더 얇은 입문서를 먼저 읽고 나서 이 책을 봐도 좋겠습니다. 제가 봤을 때에 이 책은 지도학습에는 낯설지 않은 독자를 대상으로 합니다.

목차로 훑어 봐도 살짜기 놀랄 만큼 상당히 폭넓은 주제를 다룹니다. 데이터 분석, 이미지 인지 등 비지도 학습으로 할 수 있는 전반을 모두 경험하도록 꾸몄습니다. 중간 중간 입문자에게 어려울 수 밖에 없는 부분마다 친절한 역자주가 도움말을 줍니다. 이 책이 가진 장점 중 하나입니다. 텐서플로/케라스, Scikit-learn을 두루 쓴 것도 좋아 보입니다. 비즈니스에 따라 사이킷런으로 충분한 때도 많기 때문입니다. GPU 쓰기가 부담될 때가 좀 있기도 합니다.

이 책으로 독학을 한다고 하면 거의 매일 일정 분량을 실습하고 트러블 슈팅을 한다는 전제 하에 못해도 두 달은 걸리지 않을까 합니다. 석 달이 걸렸다고 해도 느리지는 않습니다. 그룹 스터디 용도로 쓰기에도 좋겠습니다. 중간 중간 좌절하는 독자에게는 '원래' 이런 책은 100% 이해가 안 가더라도 일단 끝까지 모두 끝내면 결국 남는다는 말씀을 드리고 싶습니다. 마냥 쉽지 않기에 시간을 들여 도전할 만하다는 현실도 상기하길 바랍니다.

반응형